

Enabling Extreme Fast Charging with Energy Storage Missouri University of Science and Technology; Jonathan W. Kimball, PI

Partners: Ameren, Bitrode, and LG Energy Solution

Ameren

Project ID: ELT237

Overall Objectives

 Charging station connected to 15 kV class, 1 MW

physics to determine optimal current

New Charging Algorithm: CQtCV - uses degradation

Constant lithium plating current rather than terminal current

Shortens charge time while reducing degradation – tunable with

- Mitigate impact on battery degradation
- Mitigate impact on the grid

Discharge capacity

-CCCV

--CQTCV

DOE Share:

Contractor:

Current:

\$2,915,377

\$2,915,703

\$2,145,722

slope & threshold

Objectives This Period

Define topology

Charging time

- Gather information on grid and battery construction
- Design and construct full-scale station

Period Impact

- Accelerate adoption of electric vehicles
- Provide economic benefit to charging station owner

New Vehicle Pack

- Two layers of modules requires repurposed control board, innovative cold plate, other modifications
- Slightly oversized to minimize degradation during the project testing
- Automotive-qualified components where available; otherwise designed to meet requirements
- Same pack to be used as BESS

Low-Voltage, Low-Power Prototype

- Developed to support large number of modules, to prove out the control technology
- Proof-of-concept uses 2 of these modules per phase

Full-Power Prototype

- Modification of existing product
- change 2-port to 4-port;
- add VAR control
- Also uses new IGBTs (PrimePACK)

Grid Interface: Power & Energy Optimization

- Multi-tiered algorithm: monthly, hourly, and real-time optimization
- Incorporates PV forecasts, load forecasts, and battery degradation

XFC Station Control

Demand Charge Threshold Results →

Case-A: Unmanaged XFCS demand case

Case-B: Without considering BESS life degradation

Case-C: Without considering demand charges reduction—

a two-layer EMS from literature

Case-D: Without modeling the lower dispatch layer

Case-E: Proposed Framework (Complete)

Timeline **Barriers Addressed** Start: October 1, 2018 Power conversion – how to ensure safe, reliable End: September 30, 2023 operation on medium-voltage feeder? 60% Complete Battery degradation – how to ensure that high Currently in Budget Period 2 charge rates do not lead to premature wearout Ends September 30, 2022 or catastrophic failure? Grid interface – how to ensure that the station does not disrupt grid operations? Can we enhance performance? Budget **Partners** Total Budget: \$5,831,079 Ameren – Investor-Owned Utility

Manufacturer

Bitrode – Battery Test Equipment Manufacturer

LG Energy Solution – Battery Cell & Pack

BP2 Milestone	Туре	Description
Battery Models Scaled Up	Technical	Battery cell models extended to module and pack level
Subsystems Ready for Integration	Technical	Low-level distributed controller complete; AFE, dc-dc, chargers individually built & tested
Module Tests Complete	Technical	First charge cycling test complete on battery modules to validate charge algorithm and model
Integrated Converter Complete	Technical	All major power converter subsystems integrated and tested
Full-Scale System Go/No-Go	Go/No-Go	Power converter, charging algorithms, ESS, and high-level grid interface control all ready for final integration and field test

 Complete subscale development, cell-level modeling, grid initial study
 → COMPLETE

- Scale up power converter
- Develop module- and pack-level charging algorithms
- Complete detailed grid analysis and design controller that mitigates impact, provides revenue
- Vehicle battery pack design and construction
- System integration and field testing

Summary and Future Work

have been proven in simulation to mitigate voltage dips and reduce cost; voltage regulation to be implemented in hardware

· Energy and power management algorithm

- New CQtCV charging algorithm reduces charging time while reducing degradation; proven in cells, to be proven in modules & packs
- Low-voltage prototype constructed, being tested
- Full-power prototype designed, being constructed
- New vehicle test pack designed, being constructed

On Track for Full Testing in FY2023